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A one-center configuration-interaction wavefunction for two-electron systems, built from 
nonorthogonal  exponential- b pc orbitals may be multiplied by the correlation factor 1 § c~rl~ and sub- 
jected to a variational treatment.  All integrals can be evaluated, and are given in closed form. 
Applications are made to the ground state and an excited aZ+ state of  He l l  § The uncorrelated wave- 
functions are based on the work by Stuart  and Matsen.  Due to the correlation factor the ground state 
energy at R - -  1.4 a.u. improves by 2.3 % for a one-term and by 0.49 % for a twenty-term wavefunction. 
The optimized value o f  e decreases as the number  of  terms increases. The best energy obtained for the 
ground state is -2.97458 a.u. at R =  1.4 a.u. with c~=0.27. Energy improvements  for different R 
and changes in the orbital exponents were also studied. For  the excited state the energy lowering due 
to the correlation factor becomes insignificant as the number  of  terms increases. 

Eine Konfigurat ionenwechselwirkungs-Einzentrums-Wellenfunktion fiir zwei Elektronen kann 
mit  dem Korrelat ionsfaktor 1 + ~r12 multipliziert und  die Energie mit Hilfe der Variat ionsmethode 
berechnet werden. Die Orbitale sind nichtorthogonale Funkt ionen  vom Exponentialtyp. Alle Integrale 
werden in geschlossener F o rm gegeben. Die Methode wird auf  den Grundzustand und einen angeregten 
Znstand vom He l l  + angewandt.  Die nichtkorrelierten Wellenfunktionen von Stuart und Matsen  
dienen als Ausgangspunkt .  Infolge des Korrelat ionsfaktors verbessert sich die Grundzusstands-  
energie um 2,3 % ftir eine 1-Term, und u m  0,49 % ftir eine 20-Term-Wellenfunktion. In jedem Fall ist 
R --  1,4 a.u. Der Optimalwert von c~ n immt  mit  zunehmender  Termzahl ab. Die beste berechnete 
Energie far den Grundzus tand  is t -2 ,97458 a.u. fiir R = 1,4 a.u. und e = 0,27. Energieverbesserungen 
fiir verschiedene R und Anderungen im Exponentialfaktor wurden ebenfalls untersucht.  Die durch den 
Korrelat ionsfaktor bedingte Energieerniedrigung fiir den angeregten Zustand wird mit zunehmender  
Termzahi unbedeutend.  

Une fonction d 'onde d ' interaction de configurations monocentr ique pour  un  syst6me ~ deux 
61ectrons, construi te / t  partir d 'orbitales exponentielles non  orthogonales,  peut  atre multipli6e par le 
facteur de corr61ation 1 § ~rl2 et soumise g u n  traitement variationnel. Toutes les int6grales sont  
calculables et sont  donn6es sous forme implicite. Ceci est appliqu6 ~ l'6tat fondamental  et fi un  6tat 
excit6 ~Z T de He l l  +. Les fonctions d 'onde non corr616es sont  extraites du travail de Stuart et Matsen. 
Le facteur de corr61ation permet d'am61iorer l'6nergie de l'6tat fondamental  ~t R -- 1,4 u. a. de 2,3 % 
pour  une fonction d ' onde / t  un  terme et de 0,49 % pour  une fonction d 'onde ~t 20 termes. La valeur 
optimale de e diminue lorsque le nombre  de termes augmente.  La meilleure 6nerNe obtenue pour  
l'6tat fondamental  est --2,97458 u. a. ~ R --  1,4 u. a. avec c~ = 0,27. Les am61iorations de l'6nergie pour  
diff~rentes valeurs de R et des exposants orbitaux ont  aussi ~t6 6tudi6es. Pour  l'6tat excit6 l 'abaissement 
de l'6nergie dfi au  facteur de correlation devient insignifiant lorsque le nombre  de termes augmente.  

1. Introduction 

I n  t h e  f i r s t  p a p e r  o f  t h i s  s e r i e s  [ 4 ]  ( h e r e a f t e r  r e f e r r e d  t o  a s  I) w e  d e r i v e d  t h e  

i n t e g r a l s  r e q u i r e d  f o r  a o n e - c e n t e r  v a r i a t i o n a l  t r e a t m e n t  o f  t w o - e l e c t r o n  m o l e c u l e s  

i n v o l v i n g  t h e  c o r r e l a t i o n  f a c t o r  1 + ~ r 1 2 .  D e t a i l e d  e x p r e s s i o n s  w e r e  g i v e n  f o r  a 
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configuration-interaction (CI) wavefunction built from orthogonal Shull-L6wdin 
orbitals, multiplied by this correlation factor. Application to the two lowest aA'~ 
states of equilateral triangular H~- showed promising results. 

In this paper we extend the method to include nonorthogonal orbitals. Detailed 
expressions for a CI wavefunction using general non-Gaussian orbitals will be 
derived in Part 2. In Part 3 we apply the method to the ground state and a low- 
lying excited ~Z + state of Hel l  +. 

2. Theory 

The spatial part T of the two-electron trial wavefunction takes the form 

~rt~(rl, r2)= (1 + Gtrl2 ) ~rt~ r2) = ~, CktPk(r l ,  r2)= (1 + (xrl2) ~ C k ~ ~  (1) 
k=l k=l 

with real ~. The spin-free Hamiltonian operator (in atomic units, which will be 
used throughout this paper) is 

H = T + V I + V 2 + V a + V 4 ,  
with 

T =  - 1 / 2 ( ~ +  ~ ) ,  

V 1 = - -  Z o / r  1 - -  Z o / r 2 ,  

V2 = 1/r12, (2) 

+ 0 
1/4 = Zo Z Zx/Rox + Z ZxZr/Rxy" 

X X<Y 

The nucleus at the origin of the coordinate system is designated by the subscript 0, 
the other nuclei by subscripts X and Y. The Z's are nuclear charges, r and R have 
the usual meaning. 

To express the matrix elements in a convenient form we introduce the following 
notation for an arbitrary operator B. 

B i J =  ~ # [ ~ B @ j d V l  d r 2 '  (3) 

B~ = .IS ~2 ~~ B~~ dr1 dr2, 

Sij  = ~ # * ~ d v l  dr2' (4) 

II d2*~176 d 2. 

The matrix elements of the kinetic energy operator T differ slightly from 
Eq. (14) of paper I due to the non-orthogonality of the orbitals. They are 

T o = T, ~ + o~(Ti) + TS~ *) + a 2 [0.5 (T/s 2. + TS~ 2 *) + sO]. (5) 

The matrix elements of the potential energy terms in (2) are 

Vis=V,~ for V = V .  V2, V3, and V.,s=S,sV4, 
with 

SIj = S ~ q- 2o~S 1 At- o~2 S 2 . (6) 
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We write the symmetry-adapted functions qO ~ in the most general form for 
exponential-type orbitals. 

q~~ rz) = A i ~ ci(pi, qi, tli,(i)'di(li,).i, mi, Pl)'rPli'~2 i'e-n'~l-~i~2 
{~,q~,~,~,. (7) 
li,~,i,mi,lti) 

x Yl,m,(01, ~P0" Y~t,m(02, (P2)- 

In the following the summation indices and the arguments of c~ and d~ will be 
omitted. Eq. (7) differs from Eq. (18) of paper I through the introduction of the 
orbital exponents t/, and (,. A, is an operator that makes 4~ ~ symmetric with respect 
to interchange of electrons in the case of singlet states, and antisymmetric in the 
case of triplet states. 

Instead of the integrals (p/q)~ and [p/q]kx,o of paper I we define here 

(t 7, rl/q, r $ i "~rq2 e-'~-r ~2 Y,,,,,,* ('91, 91) 

X Yxim*(82, ~02) Yij,,j(01, q~l) Yz~vj(~ (P2) d r 1  d r 2 ,  (8) 

and similarly [p, tl/q, (]kx,o, with the additional factor 1/R ix in the integrand. 
Now the matrix elements B h will b e  given in terms of the newly defined 

integrals. 

T~ = - AiA ~ ~ ~ clcflidj[ {pj(pj + 1) - lj(lj + 1)} 
i j (9) 

x (p - 2, rt/q, (),~ - 2t/j(pj + 1) (t7 - 1, rl/q, (~  + tl2(p, *l/q, ~ 3 .  

T~* is obtained from T/~ by interchanging the indices i andj.  

V~i j = - 2ZoAiA j ~ ~ cicjdidj( p - 1, tl/q, ()~ 
i j 

V~i j = A,Aj ~. E c,cflidj(p, tl/q, ()~-1 
i j 

V~O = - 2AiAj ~ ~ cfcflidj ~ Zx[p, tl/q, r 
i j X 

S h = AiA 3 ~, ~] cicflldj(p, rl/q, r 
i j 

(t0) 

where p = Pi + P j, q = qi + q j, t /=  t/i + r/i , and ( = (i + (j- 
The final step is the evaluation of the integrals (p, rl/q, ()~ and [p, ~I/q, (]h ij. They 

are special cases of the integrals (ac/bd) and [ac/bd]. The former was worked out 
by Calais and L6wdin [1], the latter in paper I. Both can be expanded in a s~eries 
containing the integrals Q(f,g,  h, 2) and Q(f", g, h, 2), respectively. For non- 
orthogonal orbitals 

Q(f,g,h,  2 )~G(p+ 2 ,q+ 2,tl,~,k,2) 

= ~r~+2e-~r, drt ~ ~+2e-r ~2P~ . 
0 0 0 

(11) 
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Similarly 
Q(fn,  9, h, 2 ) ~ G " ( p +  Z , q +  Z, t l , ( ,k ,  2) 

- r~+2 - .  . . . .  +~] e [R</R> r 2 dr1 ~ r q+ e -~'2 dr2 (12) 
0 0 

X i rk12pO(cosO12) sin012 dO12 .  
o 

R< and R> are the smaller and greater, respectively, of rl and Rox. The pO are 
Legendre polynomials. 

For the further evaluation of the G-integrals we introduce the F-integrals 
which are similarly defined as in paper I. 

F"(p' ,q ' ,r l , ( ,k '  ) ==_ ~ r p" - m  . e [R</R>"+I ] dr~ 
o rl+r2 (13) 

• S r~'e-~rZdr2 I ~'2dr12" 
o [r~ -r21 

F(p', q', t/, (, k') is similar, but without n ,,+ 1 ,, R</R> . The integrals f"(p", a), ] (t9 , a), 
and f~'(p", a) are defined and solved as in paper I. Eq. (23) of paper I, expressing the 
G-integrals by F-integrals, can be retained if the parameters I/and ( are included 
with the arguments. Instead of Eq. (24) of paper I we have 

k ' + l  
F"(p', q', t/, (, k') = k'! ~ {(q' + t)!/[t!(k' + 1 - t)!]} 

t=O 

x {1/[(q'+'+1]} { [ 1 -  ( - 1 )  t ] f n ( p ' + k ' + l - t , q ) + ( - 1 )  t [ l + ( - 1 )  k'] (14) 
q'+t 

x ~ [ ( J / j ! ] f n ( p ' + k ' + l - t + j ,  t l + ( ) } .  
j=O 

F(p', q', t/, (, k') is solved by the same expression with the superscripts n omitted. 
Ifp" o f f ( p " ,  a) becomes - 1, then F has to be evaluated differently. In this case 

the lowest value ofp' is also - 1 for Slater orbitals, and 

k' 
F ( -  1, q', 0, (, k') = k'! ~ {same as Eq. (14) with f}  

t=0 

+ [1 + ( -  1) k'] {(q'+ k '+  1)!/(k' + 1)} {1/( q'+k'+2} {ln(1 + (/0) (15) 
q'+k'+ 1 

- ~ [ ( J / j ! ] f ( i - l ,  t l + ( ) } .  
j = l  

3. Application to 1X+ States of  H e l l  + 

Despite the fact that our method is not restricted to the treatment of diatomic 
molecules we chose Hel l  + as an example for two reasons. First, the one-center 
wavefunction, with the center at the position of the helium nucleus, has the right 
asymptotic behavior for the ground state of this molecule. Second, extensive and 
successful one-center CI calculations have been performed on this molecule by 
Stuart and Matsen [10]. Their functions and optimized orbital exponents served 
us as a convenient basis from which we started the more time-consumingcorrela- 
tion calculations. 
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The functions and designations of Table 1 were chosen. All orbitals are Slater 
orbitals, m indicates the number of terms in the CI wavefunction. 

Two sets of calculations were performed for the ground state of  H e l l  § at the 
internuclear separation R = 1.4 a.u. The difference lies in the choice of orbital 
exponents. In set I (indicated by the subscript I) the orbital exponents for all 
functions T~ and T~(m) were those of Stuart's and Matsen's 30-term wave- 
function, at R = 1.4 a.u. The energy was minimized with respect to ~ and the 
linear coefficients C i only. The results are presented in Table 2. E ~ and E{' refer 

Table 1. Wavefunctions 

m T~ 

1 (ls ls) 
3 (1) + (ls2s') + (2s' 2s') 
6 (3) + (ls 3s') + (2s' 3s') + (3s' 3s') 
7 (6) + (ls2po) 
8 (7) + (ls 3po ) 
9 (8) + (ls4po) 

10 (9) + (ls3do) 
11 (10) + (ls4do) 
12 (11) + ( ls4fo) 
13 (12) + (ls 5fo ) 
14 (13) + (2p{~ 2p{~) 
15 (14) + (2p"_+ ~ 2p"+ 2) 
17 (15) + (2p'~: 1 3p"+ 1) + (3p'~_, 3p"_+ ~) 
18 (17) + (ls 5go) 
19 (18) + (Is 6ho) 
20 (19) + (3d'+_ 13d'_+ 1) 

Table 2. Ground state energies (in a.u.) o f  Hel l  +, obtained for fixed orbital exponents at R = 1.4 a.u. 

Orbital exponents : 

s: 1.93 

d: 2.91 

s': 2.35 p: 2.92 p': 4.06 p": 3.17 

d': 3.46 f :  3.61 g: 4.38 h: 3.87 

m ~I -- E~ -- E~ A E I A E~E~ 

1 0.40 2.76506 2.84792 0.08286 2.30 
3 0.37 2.80045 2.85000 0.04955 1.77 
6 0.30 2.82832 2.85336 0.02504 0.89 
7 0.30 2.85734 2.88513 0.02779 0.97 
8 0.28 2 . 8 9 0 7 : 3  2.91673 0.02600 0.90 
9 0.28 2.89810 2.92146 0,02341 0.88 

10 0.28 2.91562 2,94195 0.02633 0,90 
11 0.25 2.92514 2.95107 0.02593 0,89 
12 0.28 2.93313 2.96081 0.02768 0.94 
13 0.25 2.93786 2.96544 0.02758 0.94 
14 0,28 2.94083 2.96546 0,02463 0.84 
15 0.25 2.95068 2.96549 0.01481 0.50 
17 0.25 2.95266 2.96561 0.01295 0.44 
18 0.28 2.95650 2.97055 0.01405 0.48 
19 0.28 2.95930 2.97440 0.01510 0.51 
20 0.27 2.96013 2.97458 0,01445 0.49 
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to the energies obtained by using the uncorrelated wavefunctions ~i ~ and the 
correlated 7Ji ~, respectively. A E ~ = E  ~ - E ~ .  In the process of  minimization, the 
smallest variation of~ was chosen to be 0.03 for m = 1 to 19, and 0.01 for m = 20. 

In set II  (indicated by the subscript II) the orbital exponents were optimized 
both for kg ~ and 7 t~. The results are shown in Table 3. For  the purpose of com- 
parison, E ~ was also minimized using the orbital exponents of 7 j~ Such results 
are indicated by an asterisk. The  smallest variation of ~ was 0.01. The smallest 
variation o f r f  was 0.01 for rn = 1 to 6 and 0.02 for m = 7 and 8. The energies E ~ and 
orbital exponents agree with Stuart 's and Matsen's  "intermediate" results. The 
orbital exponents have not been published [11]. A E n = E ~  and AEu*  

= E~I * _ EI~I- 

Table 3. Ground state energies (in a.u.) of  He l l  +, obtained for optimized orbital exponents at R = 1.4 a.u. 

m - E  ~ _ E u ,  _E~I AE u den  % ~, ~ E ~ * - E ~  
- -  E n - -  E n - -  % 

E~ E~,* 

1 2.80736 2.83065 2.84852 0.04116 1.47 0.01787 0.63 
3 2.82657 2.84693 2.85293 0.02636 0.93 0.00600 0.21 
6 2.82851 2.85234 2.85358 0.02507 0.89 0.00124 0.04 
7 2.89469 2.91800 2.91947 0.02478 0.86 0.00147 0.05 
8 2.89769 2.92101 2.92151 0.02382 0.82 0.00050 0.02 

Optimized orbital exponents and s-values 

m ,f(s) ,f(s') ~(p) ,l~,(s) ,t~(s') 'l~;(p) ~,,* ~,, 

1 1.73 1.91 0.18 0.38 
3 2.64 1.95 2.75 2.16 0.23 0.30 
6 1.77 2.44 1.93 2.57 0.28 0.29 
7 1.90 2.32 1.61 1.90 2.48 1.77 0.25 0.27 
8 1.92 2.32 2.29 1.90 2.59 2.41 0.26 0.27 

In Table 4 we give the results for the 9-term wavefunction ~(9) at different 
internuclear separations R. The orbital exponents were not optimized. They are 
taken from Stuart's and Matsen's  30-term wavefunction at the corresponding R. 
For  R = 1.7 and 1.8 a.u. we obtained them by interpolation. The smallest variation 
ofct was 0.01. A E  = E ~ - E ~. 

Tables 2 and 3 show that  the correlated energy E" converges rapidly as the 
number  of terms in the wavefunction increases. ~ ( 1 8 )  leads to an energy better 
than Stuart 's and Matsen's  30-term energy. 7~(20) gives an energy of -2 .97458 
a.u. which is better than the energy obtained in most  of the previous computations. 
(A bibliography of calculations for the ground state of H e l l  + until 1965 is given 
by Michels [8]. For  more  recent calculations see references [3], [5], [6], [7], [9] 
and [14].) Only Conroy [2] and Wolniewicz [13] report a better result at R = 1.4 
a.u. We have not optimized the orbital exponents. The improvement,  E~ 

- E~(20),is 0.49 % of E ~ and about  30 % of the total correlation energy. Assum- 
ing that ~P'(30) would give the energy -2 .97797 a.u., reported by Wolniewicz, 
the improvement  due to the correlation factor would still be 0.3 % o f E  ~ Although 
small on an absolute scale, such improvements  are not easily obtained by adding 
more terms to a CI-type wavefunction. 
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Ground state energies (in a.u.) o f  Hel l '  obtained j o t  f i xed  orbital exponents  at different R 
(in a.u.) 

R tl(s ) rl(s' ) q(p) ~ - E ~ - E ~ A E  A E / E  ~ % 

0.1 2.44 3.84 5.80 0.57 - 12.89633 - 12.77526 0.12107 0.94 
0.5 2,14 3.11 4.04 0.38 1.85391 1.91893 0.06502 3.51 
1.0 1.96 2.82 3.49 0.27 2.80930 2.83888 0.02958 1.05 
1.2 1.94 2,55 3.19 0.26 2.87355 2.89928 0.02573 0.90 
1.3 1.93 2.44 3.05 0.26 2.88898 2.91337 0.02439 0.84 
1.4 1,93 2,35 2.92 0.26 2.89810 2.92151 0.02341 0.81 
1.5 1.94 2.27 2.79 0.27 2.90308 2.92576 0.02268 0.78 
1,6 1.94 2.20 2.68 0.27 2.90535 2.92755 0.02220 0.76 
1.7 1.95 2.13 2.58 0.27 2.90583 2.92771 0.02188 0.75 
1.8 1.95 2.08 2.48 0,27 2.90520 2.92695 0.02175 0.75 
2.0 1.96 2.00 2.32 0,27 2.90222 2.92399 0.02177 0.75 
3.0 1.98 1.85 1.79 0,28 2.88680 2.90985 0.02305 0.80 
4.0 1.97 1.89 1.51 0,29 2.88125 2.90486 0.02361 0.82 
5.0 1.97 1.92 1.38 0.29 2.87950 2.90329 0.02379 0.83 

The optimized values of e are seen to decrease slightly as m increases. This 
tendency is expected whenever the correlation factor is associated with a CI 
wavefunction. As such a wavefunction leads to energies that approach the exact 
energy closer and closer, the role of the correlation factor diminishes, which is 
indicated by a decrease ofc~. The question how rapidly such a lessening would take 
place led to this work. 

The computat ions with 7J, (Table 3) were undertaken in order to find out how 
beneficial to the energy an optimization of all orbital exponents in 7J~] would be. 
Orbital  exponents generally increase by the introduction of the correlation factor 
due to the reduced shielding effect. Changes become smaller with increasing m. 
The energy improvements E ~ - E}'~ are all smaller than the corresponding E ~ - E~. 
The differences E~I* - E~ decrease much faster than the differences E ~ - E~] as m 
increases, indicating that a minimization of E~I with respect to all orbital exponents 
may become less worthwhile for larger m. 

In Fig. 1 the results of qJ~ and 7~(9), Table 4, are compared with those of 
Stuart 's and Matsen's  30-term wavefunction. Also shown are several energies 
computed by Wolniewicz, and our result E~(20) at R = 1.4 a.u. The improvement  
of the energy due to the correlation factor is approximately constant over that 
region of R which is of interest. Therefore our correlated 9-term wavefunction, 
although inferior to Stuart 's and Matsen's  30-term function around R e ,  leads to 
lower energies for R > 4 a.u. Interesting is the behaviour of ~. Beginning with 
R = 0 . 1  a.u. it decreases, goes through a minimum around R =  1.4 a.u., and 
increases slightly for larger R. 

A few exploratory computat ions on low-lying excited states of 12;T symmetry 
were performed. The results for the second lowest root of the secular equations at 
R = 8.5 a.u. are given in Table 5. This root corresponds to the energy of the 
second excited 1I;+ state of H e l l  +, since the first excited state of this symmetry does 
not dissociate according to Hell+--* He + H +. All wavefunctions were optimized 
with respect to the orbital exponents and c~, with the smaltest variation of q being 
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T 
E(a.u.) 

- -  2.86 

- -  2.88 

- -  2 . 90  

--2.92 

--2.94 

- 2.96 

- -  2.98 

i . f ~ ,  

x 

1.0 2.0 3.0 4.0 5.0 R ( a . u . ) ~  

Fig. 1. Comparison of computed energies of Hel l  +. a E~ of this work, b E~(9) of this work, x Stuart 
and Matson,  (2) Wolniewicz, Ax lowest energy of this work 

0.01 for T~ with m = 3 ,  6, 7; 0.02 for T~ 0.01 for ~ ( 3 )  and 7J~(6), and 0.05 
for T'(7) and T~(8). The smallest variation ofe  was 0.01. A E = E ~ -- E ~. 

The energy of the dissociated ions, corresponding to this state, is - 2.14597 a.u. 
Michels [8] computed a lowest energy of -2 .18177 for the second excited 1Z+ 
state of Hel l  + , also at R = 8.5 a.u., slightly lower than our best energy of - 2.18174 
a.u. Interesting from our standpoint is the fact that the improvement of the energy 
due to the correlation factor is much smaller than in the case of the ground state, 
and decreases rapidly to insignificant values as m increases. Also e is smaller and 
decreases fast. 

Details on theory and computations, including tables of the linear coefficients, 
can be found in reference [12]. 

Table 5. Energies (in a.u.) o f  second excited 1Z+ state o f  Hel l  + at R = 8.5 a.u. 

m T~ ~~ T~ q~(s') tl~(s ') tl~(p) ot - E  ~ - E  ~ AE A E / E  ~  

3 1.95 0.43 1.99 0.57 0.31 "2.12947 2.13635 0.00688 0.32 
6 1.99 0.72 2.00 0.78 0.06 2.14238 2.14357 0.00119 0.06 
7 1.99 0.66 0.43 1.99 0.71 0.47 0.05 2.18052 2.18095 0.00043 0.02 
8 2.00 0.66 0.33 2.00 0.70 0.36 0.04 2.18135 2.18174 0.00039 0.02 
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